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Abstract. Electroencephalographic (EEG) data can be very domain-
specific: the hardware, subjects and tasks used to acquire the data can
all influence the raw signal, obscuring the patterns which persist be-
tween settings. Self-supervised learning (SSL) has recently been gaining
recognition as a promising means for extracting general features from
EEG data. For instance, it has been shown that a simple convolutional
neural network can benefit from self-supervised pre-training within one
domain. It has also been shown that more complex, transformer-based
models can generalize between domains: that is, pre-training on data
sampled in one setting can benefit fine-tuning on data from another set-
ting. Here, we aim to show that a simple convolutional neural network can
already be sufficient to extract features that generalize between domains.
While more complicated and expensive models may allow for better per-
formance, these additions are not strictly necessary for out-of-domain
generalization. We pre-train a convolutional model on a sleep-staging
dataset and show that it benefits learning on three downstream tasks:
abnormality detection, Autism classification and classifying the effects
of scopolamine. In all cases, we show faster convergence than a base-
line trained from scratch, reaching similar performance. Additionally we
show that for some of these tasks the pre-trained representations (be-
fore fine-tuning) capture the class annotation well enough that they are
clearly visible in low-dimensional visualizations.

Keywords: EEG · self-supervised learning · generalized models.
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1 Introduction

An electroencephalograph (EEG) is a recording of electrical potentials produced
by the brain, recorded by placing various electrodes on the scalp [13]. Individuals
doing different tasks will produce relatively similar brain activity which is re-
flected in EEG recordings. A central problem in the analysis of EEG recordings
is that recordings made in different contexts can differ in superficial ways. Here,
we refer to these details of the recording context as the domain.

Because of superficial differences, the features extracted from an EEG signal
in one domain do not easily transfer to another. However, recent results show
that certain deep learning methods, specifically the technique of self-supervised
learning (SSL), allows for the transfer of meaningful features between domains
[9].

In SSL, the structure of a large, unlabeled dataset is used to turn an unsu-
pervised learning problem to a supervised learning problem, called a pretext or
pre-training task [8]. A pre-training task is a task predicting surrogate supervi-
sions defined on unlabeled data [18]. Surrogate supervision is created from the
data itself by obscuring certain elements of the data, using the obscured elements
as the prediction label.

The most notable benefit of using self-supervised learning techniques is that
they do not require annotated data for the pre-training task. Annotated data
is expensive and prone to human error and bias. Self-supervision potentially
allows for learning more general and robust features than supervised learning
models [14]. Neural network models learn representations following this pre-
training task, for which this learned representation is used to solve a target
problem called the downstream task. In effective SSL settings, the pre-training
often causes the model to converge faster on the downstream task, and possibly
also to a higher level of accuracy.

In [9] it was shown that a deep learning model can be used to learn a feature-
extractor for EEG data whose features transfer between domains. Here, the
model in question is a mixture of convolutional and self-attention layers. In ear-
lier research [3], it was shown that a simpler, purely convolutional architecture
could effectively perform self-supervised learning, but the model was only eval-
uated within-domain.

Our research question is whether the second, simpler model also allows for
some measure of domain transfer. That is, can it be pre-trained on one domain,
and benefit learning on a data in another domain?

To answer this question we pre-train a convolutional neural network on a
sleep-staging dataset to extract a learned feature representation, then obtain
feature vectors (embeddings) from other datasets for which a supervised model
is trained in order to solve a downstream task. We compare these results against a
fully-supervised convolutional neural network to establish whether some general
knowledge about EEG has been learned by comparing early accuracy and speed
of learning with training examples used. We also make use of dimensionality
reduction techniques to visualize any identifiable clusters of classes induced by
the SSL pre-training task.
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2 Related Work

EEG is notoriously difficult to interpret, since it is hard to distinguish task-
relevant information from more superficial features [15]. Despite this fact, the
electrical signals making up EEG data is still governed by some physical and
physiological laws with distinguishable patterns [7]. SSL can be used to learn a
representation of this data by relying on the general structural features found,
unhindered by the complexity of such a signal. Indeed, multiple authors claim
high accuracies using SSL on sleep-staging EEG data (76.66% with relative posi-
tioning [3] and 88.16% with contrastive learning [7]), while reducing the amount
of annotated data required. [9] adapted a language model originally designed for
automatic speech detection and capable of processing enormous amounts of audio
data to instead handle EEG data. Through a process of SSL, [9] encoded EEG
segments as a sequence of learned feature vectors which they call BErt-inspired
Neural Data Representations (BENDR), BERT referring to the adapted lan-
guage model (Bidirectional Encoder Representations from Transformers). This
representation was used to fine-tune target models and achieved comparatively
high accuracy, outperforming prior sleep stage classification performance.

3 Materials and Methods

This project is based extensively on the research of [3,2]. Thus, most of the
techniques and tools that are used are the same, with some exception where we
involved functionality to allow new datasets to be processed and to allow for
evaluation of baselines and SSL models, and plotting functions.

Specifically, we take from [3,2] the model architecture and the choice of sleep
staging as a pre-training task.

3.1 Data

Sleep Physionet Dataset The pre-training dataset used is the Sleep Physionet
EDF dataset containing 153 overnight sleep recordings from 83 healthy subjects
of ages 25 to 101 [1]. Signals were recorded with EEG channels Fpz-Cz and Pz-
Oz at 100 Hz. Data was annotated at 30-second intervals by experts following
the Rechtschaffen & Kales (R&K) sleep-staging standard, with the exception of
sleep staging 3 and 4 which were combined following the American Academy
of Sleep Medicine (AASM) standard [4]. This resulted in a dataset with 5 class
labels: Wake (W), Rapid Eye Movement (REM, R), Non-Rapid Eye Movement
(NREM, N) 1-3. These class labels are not used during pre-training, but we do
use them when finetuning the model on the sleep staging dataset itself.

TUAB Temple University Hospital (TUH) provides a set of public datasets
which can be used for research and commercialization purposes. We used the
TUH Abnormal (TUAB) [10] EEG Corpus as one of the datasets to perform our
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evaluation on. TUAB contains 2,993 hours of adult EEG records from 2,383 sub-
jects. Abnormality in EEG in this case was characterized by expert neurologists
following a number of factors, including reactivity, α,β,µ,θ activities, and sub-
jects’ age and gender, all in relation to a person’s state of consciousness (awake,
drowsy or comatose) .

TUAB + white noise For the purposes of verifying our assumptions, we also
include TUAB together with a class of white noise. This functions as a sanity
check. If the proposed method works at all, the difference between white noise
and any EEG data should be very apparent.

SPACE / BAMBI Dataset SPACE / BAMBI is a private dataset compris-
ing individuals with Autism Spectrum Disorder (ASD), epilepsy, and healthy
subjects as controls.5 The dataset contains a large amount of artifacts which
were cleaned prior to preprocessing and segmentation. EEG was recorded with
64 channels of which included Fpz, Cz, Pz, and Oz, selected and re-referenced as
Fpz-Cz and Pz-Oz. Since the majority of recordings were of class ASD, a limiter
was set in an attempt to mitigate the imbalance by taking minimum number of
recordings of all three classes and regarding that amount as the limit of record-
ings to consider. A class imbalance was present nonetheless since cleaning arti-
facts of varied lengths will result in having recordings with different durations,
thereby having different number of samples. To mitigate the issue, we also use
a balanced accuracy loss while training.

Scopolamine Dataset Scopolamine is the most extensively used pharmaco-
logical model of cognitive impairment and was administered as a 15-minute in-
travenous infusion to 83 healthy male subjects aged 18–55 years in this dataset.
0.5 mg of Scopolamine (or placebo) was used to demonstrate that pharmalog-
ical cognitive-enchancing compounds of well renown have significant effect in
the cognition activity of healthy volunteers. Fz, Cz, Pz, Oz EEG channels were
recorded and referenced as Fz-Cz, Pz-Oz. Recordings were performed over a pe-
riod of 8.5 hours with 11 measurement time-points from baseline (pre-dose), each
recording lasting 64 seconds. [16] states that peak scopolamine was found to be
at measurement 03 (M03) and that therefore, this was considered to be the most
distinctive. Selected time-points were M01 (baseline), M03 (peak), M05 (tempo-
ral median), M11 (wash-out). Only trails with scopolamine CHDR0507 (drug:
R213129) and CHDR0511 (drug: R231857) were selected. We do not include the
placebo class.

3.2 Preprocessing

First, the signal is converted from volts to micro-volts. Second, the EEG data
is filtered using a band-pass filter in order to filter out signal frequencies which
5 Obtained from the Center for Neurogenomics and Cognitive Research (CNCR), de-

partment of Integrative Neurophysiology (INF).
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are lower than 0.5 Hz and higher than 30 Hz to filter out frequencies which are
not critical to sleep-staging. This approach was also taken by Chambon et al. in
the preprocessing stage [5]. Filtering is performed using MNE FIR filtering as
implemented in the Braindecode framework.

Third, signals are split into non-overlapping segments of 5 seconds along
with their respective annotations. In [3], annotations were made for 30 second
segments. However, since the records from the downstream datasets are much
shorter than the average 7 hour long Sleep Physionet recordings, we had to
shorten the window length.

Finally, the windowed dataset is normalized using a channel-wise Z-score
normalization. Table 1 lists the number of samples per class for each dataset
that are used to train for the downstream tasks. Balanced accuracy is used as
the metric for evaluating the training results since certain classes have more
samples than the rest.

Table 1: Number of 5 second window samples per class for each dataset evalua-
tion. Lowercase letters indicate abnormal, normal, healthy, epilepsy and white
noise.

Sleep Physionet TUAB TUAB + WN SPACE / BAMBI Scopolamine

4709 (W) 12533 (a) 12468 (a) 2942 (h) 1896 (M01)

2928 (N1) 14301 (n) 14702 (n) 2631 (e) 1896 (M03)

14772 (N2) 37400 (w) 1907 (ASD) 1980 (M05)

3180 (N3) 1968 (M11)

5178 (REM)

3.3 Pre-training

We follow the approach of [5,2] in all experimental detail with the following
exceptions. To adapt to tasks where high-frequency features are more relevant we
change the input frequency to 100Hz. For the sleep staging data, this is the native
resolution. For the downstream tasks, we downsample to this resolution.6 We
change the window length to T = 5, and change the kernel sizes to 50 (half
the sampling frequency) and remove all dropout layers. All other details of the
architecture are taken from the original model. Datasets are split into training
(60%), validation (20%) and testing (20%) sets. See Table 2 for a full description
of the model.
6 Using the method mne.io.Raw.resample in the MNE software [6], which implements

a low-pass filter followed by nearest neighbor sampling.

https://mne.tools/stable/generated/mne.io.Raw.html#mne.io.Raw.resample
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Relative Positioning In [3,2], several pre-training tasks are proposed. Here,
we focus on the task of relative positioning. In this task, two short subsequences
of the EEG signal–called windows—are sampled, either close together, or far
apart (see Figure 1). The task for the model is to predict whether a given pair
of windows was close together in the original data or far apart. This provides
a binary classification task requiring some insight into the data, for which no
manual labeling is required.

We sample pairs of time windows (xt, xt′) with xt, xt′ ∈ RTf×C , with T the
window length in seconds, f the signal frequency and C the number of channels.
With equal probability, the starting times t and t′ of these windows are chosen
to be either farther apart than some hyperparameter τneg or closer together than
some hyperparameter τpos < τneg. The pair is labeled with y = −1 in the former
case, and y = 1 in the latter. The task is to predict the label given the pair. We
use τneg = 15 min and τpos = 4 min.

To sample these pairs, the sequence is first sliced into windows of length
T , excluding the first 30 minutes. The first window xt is chosen uniformly. A
label is chosen with equal probability and the second window xt′ is then chosen
uniformly from all windows that are sufficiently close to, or far away from, xt.
We sample 2,000 pairs from each record in the sleep staging data to make our
pre-training dataset.

During training, both pairs are passed through the same feature extraction
network (see Table 2). The extracted features are then passed to a classification
head to predict y. After pre-training the classification head is discarded and only
the feature extractor is retained. See [2] for further details.

This pre-training task is expected to work because time windows close in
time are likely to share similar features, especially in the context of sleep-staging
where sleep stages last between 1 to 40 minutes [1]. Therefore, windows posi-
tioned closer in time will likely share the same properties, while windows further
apart are more diverse. By this approach, we hope to generate an appropriate
representation of the data in which some generic EEG features are highlighted.7

3.4 Reporting and Visualization

If pre-training is successful, our feature extractor should encode physiologically
relevant information in our learned representation in the resulting 25-dimensional
feature vectors (even before finetuning). To verify this, we apply different dimen-
sionality reduction techniques to reduce the number of dimensions to two or three
dimensions, so that the data can be scatterplotted. If the method is successful,
then instances with similar features, for instance, the same label, should clus-
ter together.We perform Principal Component Analysis (PCA), t-distributed
Stochastic Neighbour Embedding (t-SNE) [11] and Uniform Manifold Approxi-
mation and Projection (UMAP) [12].

7 This approach is similar to the concept of Slow Feature Analysis (SFA) [17]
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Fig. 1: Visual explanation adopted and edited from [2] showing how relative
positioning works for a multivariate times series with EEG data. The figure de-
scribes the sampling process of selecting training examples in each pre-training
task. Samples are selected by picking two pairs of windows randomly in a pre-
defined range (τpos or τneg).

Table 2: The layers and layer specifications comprising our downstream classifi-
cation model. This architecture largely follows [5,2]. Layers 3-10 are the layers in
which feature extraction occurs. In pre-training the feature extractor is followed
by a classification head which combines the features from both pairs.

# layer type kernel stride padding output # params activation

1 input (2, 500)

2 reshape (2, 500, 1)

3 Conv2d (2, 1) (1, 1) 0 (1, 500, 2) 6 linear

4 permute (2, 500, 1)

5 Conv2d (1, 50) (1, 1) (0, 13) (16, 2, 477) 816 ReLU

6 Batch Norm 32

7 Max Pooling (1, 13) (1, 13) 0 (16, 2, 36)

8 Conv2d (1, 50) (1, 1) (0, 13) (16, 2, 13) 12,816 ReLU

9 Batch Norm 32
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10 Max Pooling (1, 13) (1, 13) 0 (16, 2, 1)

12 Linear 25 825
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3.5 Downstream classification

To use the pre-trained model for classification on the downstream tasks, we pass
samples from the pre-processed, segmented downstream data through the feature
extractor, so that we obtain feature vectors. These feature extractors are then
used to train a logistic regression model. Following [3,2], we keep the weights of
the feature extractor frozen during downstream training.8

We compare the performance of the pre-trained model to a baseline model
with the same architecture (as specified in Table 2) which has been randomly
initialized and trained only on the downstream task. If the pre-trained model
outperforms the baseline, we may conclude that there is some benefit to pre-
training, even though the pre-training data came from a different domain.

We find that the benefit of pre-training appears most readily in the low-data
domain: a model benefits most from pre-training when only limited downstream
data is available. For each task, we train on a subset of N instances, and study
the relation between N and the resulting accuracy. The idea is that even if the
model does not outperform the baseline when all downstream data is available,
we may still be able to see a benefit to pretraining in the low-data domain,
which is sufficient to confirm our hypothesis that a convolutional network can,
in principle, transfer physiologically relevant features between domains.

We first fine-tune the model using the pre-training data as a downstream
task, as done in [2]. This serves to validate that the approach still functions
after our minor changes. We then apply the model to the downstream tasks of
Section 3.1.

4 Results

4.1 Pre-training

The pre-training network is used to obtain a model trained with sleep staging
data for solving the relative positioning pre-training task. When pre-training on
sleep staging data, we obtain a precision of 51%, a recall of 40% and an F1
score of 45% for the positive label y = 1. These results may not look promising,
as they are close to random chance, but down-stream results and visualizations
show that this is sufficient for effective self-supervision.

One reason for the reduction in balanced accuracy could be the changes made
in the pre-trained network. The input was reduced to 1

6 of the original size (5
second windows instead of 30 second windows), resulting in more samples and
a greater chance of error. Layer parameters were set accordingly, and dropout
was removed due to the low amount of output features.

8 It may well be that fine-tuning the whole model, including the feature extractor,
results in better performance. However, our aim here is to show that this model in its
simplest and computationally least expensive form is already capable of generalizing
between domains.
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4.2 Plotting the Feature Space

In order to evaluate whether the learned representation obtained from perform-
ing self-supervision learning contains any trace of general EEG knowledge, a
variety of datasets needed to be explored. We pass our three datasets (TUAB,
SPACE/BAMBI and scopolamine) and the sanity check dataset (TUAB + white
noise) through our pre-trained model to transform the raw data into correspond-
ing feature vectors; n-dimensional vectors of numerical features representing the
data.

We apply dimensionality reduction techniques PCA, t-SNE, and UMAP to
reduce n-dimensional feature vectors to n = 2 or n = 3. For these plots, the
model is not fine-tuned, and the feature vectors we extract come from a model
that has never been exposed to the class labels of the downstream data.

We first apply this method to the sleep staging task that was also used for pre-
training. Figure 2 shows six plots of three dimensionality reduction techniques to
visualize how obtaining feature vectors through the pre-trained model compares
to the raw segmented data. The plots show notable differences between their
original counterparts, outlining some structure between the annotations. This
reproduces results already shown by [3], but for our modified model. We also use
additional dimensionality reduction methods and compare to a dimensionality
reduction of the raw data, to show how much structure exactly is added by the
model.

In Figure 3 we show UMAP plots for the downstream data. Figures (a) and
(b) have the most clear structure. From these plots we can see that abnormal,
normal and white noise signal classes are determined to be different enough
for our pre-trained model to make a clear distinction. In figure (b), white noise
(yellow) is exceptionally distinct from the normal and abnormal EEG features
which functions as a sanity check as white noise and EEG data are significantly
different from each other. In figure (c) (SPACE / BAMBI), epilepsy class (pink)
is most prominent on the corners of the plot, but also scattered sporadically in
the center, while healthy and ASD classes are scattered together with no evident
disparity, suggesting that the the two classes may be similar.

We also plot the embeddings in a 3 dimensional feature space which allows for
additional exploration of any possible clusters. Looking at figure 3 (d), the M05
class seems to favour a particular side of the plot, meaning that some difference
was indeed found from the rest of the classes. Figure 4 illustrates three different
views of the same UMAP embeddings plotted in a 3D view where we can see
clearer the M05 class cluster residing in the plot.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2: PCA (a,b), t-SNE (c,d) and UMAP (e,f) scatter plots of 5-second window
embeddings reduced from 25 dimensions to 2. Plots (a),(c) and (e) are scatter
plots of 5 second window raw EEG data, while (b),(d) and (f) are scatter plots
of the embeddings obtained through the pre-trained network. PCA, t-SNE and
UMAP on the raw data do not capture any substantial class structure, but using
feature vectors, the classes clearly cluster together.
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(a) TUAB feature vectors. (b) TUAB + white noise feature vectors.

(c) SPACE / BAMBI feature vectors. (d) Scopolamine feature vectors.

Fig. 3: (a) UMAP plots of 5 second window featuring TUAB, (b) TUAB + white
noise, (c) SPACE / BAMBI, and (d) scopolamine datasets. Figures are UMAP
representations of data obtained from feature vectors passed through the sleep-
staging pre-trained model. The data visualized has been dimensionally reduced
from 25 dimensions per 5 second time window to 2 dimensions. Note that in
TUAB and SPACE/BAMBI, there is a clear separation of classes, even though
the model used to produce these features was only trained on the sleep-staging
data.

Fig. 4: UMAP of scopolamine dataset embeddings obtained from pre-trained
model and plotted in 3D. Different perspectives make it easier to identify grouped
class clusters.
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4.3 SSL improves learning for EEG datasets in the low-data regime

We compare performance of the embeddings obtained from the sleep-staging
pre-trained network to a Fully-Supervised Learning (FSL) convolutional neural
network with the same architecture.

For each dataset, we fine-tune the pre-trained model on a subset of N in-
stances from the training data on the downstream task. We compare against
the same model without pre-training: that is, initialized randomly and trained
directly, only on the downstream data. Figure 5 shows the resulting balanced
accuracy plotted against N . In all cases, the SSL model shows a clear perfor-
mance benefit in the low-data regime. While this is in some cases overtaken
by baseline when more data is available, the results for the low-data regime
suggest that some physiologically relevant information is transferred from the
pre-training data to the downstream data. This is in line with the results from
the visualization experiments.
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(c) SPACE / BAMBI
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(d) Scopolamine

Fig. 5: Plots of the balanced accuracy against training examples. Lines represent
the mean obtained over a 5 fold cross-validation training run, while the opaque
area represents standard deviation. In all cases, we see that self-supervised learn-
ing allows training to perform better in the low-data regime.
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Table 3: Accuracies and classification of learning curves for Self-Supervised
Learning (SSL) against Fully-Supervised Learning (FSL). SSL accuracies near
convergences are higher than that of FSL, indicating faster learning with a
smaller sample size.

Training

samples

Balanecd

Accuracy

Training

Samples

Balanecd

Accuracy

SSL near

convergence
SSL FSL all SSL FSL

Sleep Physionet
3000 68% 42% 25000 69% 65%

W | N1 | N2 | N3+4 | N5

TUAB
2500 82.5% 70% 22500 82.5% 86%

abnormal | normal

SPACE / BAMBI
1000 40% 37% 6000 42% 43%

artifact | non-artifact | ignored

Scopolamine
1000 36% 27.5% 6200 35% 33%

M01 | M03 | M05 | M11

5 Discussion

We used the Sleep Physionet EEG dataset to pre-train a convolutional neural
network using self-supervised learning. We apply the knowledge learned from
the representation using transfer learning to three different datasets (TUAB,
SPACE / BAMBI, and Scopolamine) and additionally to TUAB + white noise
for validation purposes. The visualizations of the feature space reveal structures
of data classes which indicate that the class information is to some extent con-
tained in the features extracted by the model even before fine-tuning. Localized
structures of the data indicating relevant physiological information are extracted
cross-domain, further validating the usefulness of applying our pre-trained model
on different datasets.

Training on different amounts of downstream data shows that SSL performs
better in the low-data regime for each dataset as indicated in Figure 5. However,
in instances where more data is available, SSL is comparatively worse in some
cases.

Ultimately, we find that self-supervised learning using a purely convolutional
model is indeed useful as some information that is relevant between domains is
to encoded by the learned feature extractor.

With these results, we show that a simple convolutional neural network archi-
tecture is sufficient for extracting relevant features that generalize over different
EEG domains. Moreover, we can say that it is not only sleep staging knowledge
that is encoded in the learned representation, but also knowledge about EEG
data pertaining to the TUAB, SPACE/BAMBI and scopolamine datasets, sug-
gesting that knowledge about the general EEG signals seem to be indeed present
in our generated pre-trained model.
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5.1 Limitations and future work

It is important to keep in mind that the architectural details of our SSL and FSL
models are optimized for sleep-staging EEG data, data which is characterized
by distinct time, frequency and proportions per sleep stage [5]. High disparity
between attribute specifications of data classes makes it easier for any deep-
learning model to identify distinct features. It may well be possible to achieve
better downstream performance by changing the details of the architecture to
better suite a diverse range of tasks. Additionally, including different tasks in the
pre-training data may also improve performance (an approach that was followed
in [9]).

We have shown that fundamentally, out-of-domain generalization can be
achieved with a simple convolutional model. We based our architecture on the
model of [3]. As noted, out-of-domain generalization was demonstrated earlier
using a more complicated transformer model in [9]. To get more insight into
exactly which aspects of the latter model contribute to its performance, a more
thorough ablation study of that model would be required, on the datasets and
tasks used there.

A convolutional architecture like the one used here has the benefit that it
scales linearly in the length of the input sequence, as opposed to a transformer-
based model, which (in the most commonly used implementation) scales quadrat-
ically. Precisely what the benefits and downsides of this tradeoff are, and what
they mean for EEG analysis in practice requires more investigation.
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